Properties

Label 1728.47367.2.d1
Order $ 2^{5} \cdot 3^{3} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{12}:S_3^2$
Order: \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
Index: \(2\)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $ad, e^{6}, c^{2}e^{6}, b, d^{3}e^{11}, e^{4}, d^{2}, c^{3}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, maximal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $Q_8:S_3^3$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3.C_2^6.D_6^2$
$\operatorname{Aut}(H)$ $C_3^3.C_2^6.C_2^3$
$\card{W}$\(864\)\(\medspace = 2^{5} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$Q_8:S_3^3$
Complements:$C_2$ $C_2$ $C_2$
Minimal over-subgroups:$Q_8:S_3^3$
Maximal under-subgroups:$C_{12}:S_3^2$$C_2.S_3^3$$C_{12}.S_3^2$$C_2.S_3^3$$D_6:S_3^2$$C_{12}.S_3^2$$C_2.S_3^3$$C_{12}:S_3^2$$C_{12}.S_3^2$$D_{12}:D_6$$D_{12}:D_6$

Other information

Number of subgroups in this autjugacy class$9$
Number of conjugacy classes in this autjugacy class$9$
Möbius function not computed
Projective image not computed