Properties

Label 1728.47367.16.a1
Order $ 2^{2} \cdot 3^{3} $
Index $ 2^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2\times D_6$
Order: \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $ae^{3}, d^{2}, e^{6}, c^{2}e^{6}, e^{4}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $Q_8:S_3^3$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_2^4$
Order: \(16\)\(\medspace = 2^{4} \)
Exponent: \(2\)
Automorphism Group: $A_8$, of order \(20160\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \)
Outer Automorphisms: $A_8$, of order \(20160\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3.C_2^6.D_6^2$
$\operatorname{Aut}(H)$ $D_6\times \GL(2,3)$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
$\card{W}$\(48\)\(\medspace = 2^{4} \cdot 3 \)

Related subgroups

Centralizer:$C_3\times C_{12}$
Normalizer:$Q_8:S_3^3$
Minimal over-subgroups:$C_6:S_3^2$$C_3^2:D_{12}$$C_6.C_6^2$$C_6.S_3^2$$C_6.S_3^2$$C_6\times S_3^2$$C_3^2\times D_{12}$$C_3^3:D_4$
Maximal under-subgroups:$C_3^2\times C_6$$S_3\times C_3^2$$C_6\times S_3$$C_6^2$$C_6\times S_3$

Other information

Number of subgroups in this autjugacy class$9$
Number of conjugacy classes in this autjugacy class$9$
Möbius function not computed
Projective image not computed