Properties

Label 1728.47367.12.t1
Order $ 2^{4} \cdot 3^{2} $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{12}.D_6$
Order: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $ac^{3}e^{6}, d^{2}, e^{6}, b, e^{3}, e^{4}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $Q_8:S_3^3$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3.C_2^6.D_6^2$
$\operatorname{Aut}(H)$ $C_{12}:C_2^4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\card{W}$\(48\)\(\medspace = 2^{4} \cdot 3 \)

Related subgroups

Centralizer:$C_{12}$
Normalizer:$C_4.D_6^2$
Normal closure:$C_{12}.S_3^2$
Core:$S_3\times C_{12}$
Minimal over-subgroups:$C_{12}.S_3^2$$D_4:S_3^2$$D_{12}:D_6$$C_6^2.C_2^3$
Maximal under-subgroups:$S_3\times C_{12}$$C_6:C_{12}$$D_4\times C_3^2$$C_6\wr C_2$$C_3^2:Q_8$$D_4:C_6$$D_4:S_3$

Other information

Number of subgroups in this autjugacy class$54$
Number of conjugacy classes in this autjugacy class$18$
Möbius function not computed
Projective image not computed