Properties

Label 1728.47367.12.b1
Order $ 2^{4} \cdot 3^{2} $
Index $ 2^{2} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{12}:S_3$
Order: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $ac^{3}, d^{2}, c^{2}e^{6}, b, e^{9}, e^{6}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $Q_8:S_3^3$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $D_6$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, an A-group, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3.C_2^6.D_6^2$
$\operatorname{Aut}(H)$ $C_4:D_6^2$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
$\card{W}$\(144\)\(\medspace = 2^{4} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_3:C_4$
Normalizer:$Q_8:S_3^3$
Complements:$D_6$ $D_6$ $D_6$ $D_6$ $D_6$
Minimal over-subgroups:$C_{12}.S_3^2$$D_{12}:D_6$$D_{12}:D_6$$D_{12}:D_6$
Maximal under-subgroups:$S_3\times C_{12}$$C_6.D_6$$C_3\times D_{12}$$D_6:S_3$$C_3^2:Q_8$$D_4:S_3$$D_{12}:C_2$

Other information

Number of subgroups in this autjugacy class$18$
Number of conjugacy classes in this autjugacy class$18$
Möbius function not computed
Projective image not computed