Properties

Label 1728.47365.72.bu1
Order $ 2^{3} \cdot 3 $
Index $ 2^{3} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4\times S_3$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Index: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $abcd^{3}, cd^{3}e^{5}, e^{6}, e^{4}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $Q_8:S_3^3$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.C_6^2.C_2^6$
$\operatorname{Aut}(H)$ $C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\card{W}$\(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_2^2\times C_4$
Normalizer:$D_{12}:C_2^3$
Normal closure:$C_6.S_3^2$
Core:$D_6$
Minimal over-subgroups:$C_6.D_6$$C_6.D_6$$C_4\times D_6$$C_4\times D_6$$D_{12}:C_2$$D_{12}:C_2$
Maximal under-subgroups:$D_6$$C_{12}$$C_3:C_4$$C_2\times C_4$

Other information

Number of subgroups in this autjugacy class$27$
Number of conjugacy classes in this autjugacy class$3$
Möbius function not computed
Projective image not computed