Properties

Label 1728.47319.6.c1
Order $ 2^{5} \cdot 3^{2} $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^2:D_4$
Order: \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\left(\begin{array}{rr} 23 & 0 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 1 & 33 \\ 33 & 34 \end{array}\right), \left(\begin{array}{rr} 43 & 0 \\ 0 & 43 \end{array}\right), \left(\begin{array}{rr} 43 & 45 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 19 & 30 \\ 6 & 13 \end{array}\right), \left(\begin{array}{rr} 23 & 0 \\ 0 & 23 \end{array}\right), \left(\begin{array}{rr} 31 & 30 \\ 12 & 13 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_{12}:D_6^2$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4:(S_3\times D_{12})$, of order \(442368\)\(\medspace = 2^{14} \cdot 3^{3} \)
$\operatorname{Aut}(H)$ $C_2^4.C_2^4.S_3^3$
$\card{W}$\(72\)\(\medspace = 2^{3} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$C_4:D_6^2$
Normal closure:$D_6^2:S_3$
Core:$C_6:D_{12}$
Minimal over-subgroups:$D_6^2:S_3$$C_4:D_6^2$
Maximal under-subgroups:$C_6:D_{12}$$C_6^2:C_2^2$$C_6^2:C_2^2$$C_6^2:C_4$$C_6:D_{12}$$C_6:D_{12}$$C_6:D_{12}$$C_6:D_{12}$$C_2^3:D_6$$C_2^2\times D_{12}$

Other information

Number of subgroups in this autjugacy class$12$
Number of conjugacy classes in this autjugacy class$4$
Möbius function not computed
Projective image not computed