Properties

Label 1728.47319.36.b1
Order $ 2^{4} \cdot 3 $
Index $ 2^{2} \cdot 3^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times D_{12}$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Index: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\left(\begin{array}{rr} 23 & 0 \\ 0 & 23 \end{array}\right), \left(\begin{array}{rr} 19 & 30 \\ 6 & 13 \end{array}\right), \left(\begin{array}{rr} 43 & 12 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 43 & 12 \\ 42 & 1 \end{array}\right), \left(\begin{array}{rr} 43 & 0 \\ 0 & 43 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a direct factor, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_{12}:D_6^2$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $S_3^2$
Order: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $\SOPlus(4,2)$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), metabelian, an A-group, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4:(S_3\times D_{12})$, of order \(442368\)\(\medspace = 2^{14} \cdot 3^{3} \)
$\operatorname{Aut}(H)$ $C_2\wr C_2^2\times S_3$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
$\card{W}$\(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$D_6^2$
Normalizer:$C_{12}:D_6^2$
Complements:$S_3^2$ $S_3^2$ $S_3^2$ $S_3^2$
Minimal over-subgroups:$C_6\times D_{12}$$C_6\times D_{12}$$C_2^2\times D_{12}$$C_2^2\times D_{12}$
Maximal under-subgroups:$C_2\times D_6$$C_2\times C_{12}$$D_{12}$$C_2\times D_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed