Subgroup ($H$) information
| Description: | $C_2\times D_{12}$ |
| Order: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| Index: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Generators: |
$\left(\begin{array}{rr}
23 & 0 \\
0 & 23
\end{array}\right), \left(\begin{array}{rr}
19 & 30 \\
6 & 13
\end{array}\right), \left(\begin{array}{rr}
43 & 12 \\
0 & 1
\end{array}\right), \left(\begin{array}{rr}
43 & 12 \\
42 & 1
\end{array}\right), \left(\begin{array}{rr}
43 & 0 \\
0 & 43
\end{array}\right)$
|
| Derived length: | $2$ |
The subgroup is characteristic (hence normal), a direct factor, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Ambient group ($G$) information
| Description: | $C_{12}:D_6^2$ |
| Order: | \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Quotient group ($Q$) structure
| Description: | $S_3^2$ |
| Order: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Automorphism Group: | $\SOPlus(4,2)$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
| Outer Automorphisms: | $C_2$, of order \(2\) |
| Derived length: | $2$ |
The quotient is nonabelian, supersolvable (hence solvable and monomial), metabelian, an A-group, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3^4:(S_3\times D_{12})$, of order \(442368\)\(\medspace = 2^{14} \cdot 3^{3} \) |
| $\operatorname{Aut}(H)$ | $C_2\wr C_2^2\times S_3$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \) |
| $\card{W}$ | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Related subgroups
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | not computed |
| Projective image | not computed |