Subgroup ($H$) information
| Description: | $C_{12}:D_6$ |
| Order: | \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) |
| Index: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Generators: |
$be^{3}, d^{4}, c^{2}, c^{3}, d^{3}, d^{6}$
|
| Derived length: | $2$ |
The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Ambient group ($G$) information
| Description: | $C_{12}.D_6^2$ |
| Order: | \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_6^3.C_2^6.C_2^5$ |
| $\operatorname{Aut}(H)$ | $C_6^2:(D_4\times \GL(2,3))$, of order \(13824\)\(\medspace = 2^{9} \cdot 3^{3} \) |
| $\card{W}$ | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $24$ |
| Number of conjugacy classes in this autjugacy class | $8$ |
| Möbius function | not computed |
| Projective image | not computed |