Properties

Label 1728.47306.12.r1
Order $ 2^{4} \cdot 3^{2} $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6:D_{12}$
Order: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\left(\begin{array}{rr} 77 & 20 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 55 & 60 \\ 0 & 61 \end{array}\right), \left(\begin{array}{rr} 1 & 26 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 11 & 51 \\ 18 & 41 \end{array}\right), \left(\begin{array}{rr} 53 & 0 \\ 0 & 53 \end{array}\right), \left(\begin{array}{rr} 25 & 0 \\ 0 & 25 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_{12}.D_6^2$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3^4:S_3$, of order \(442368\)\(\medspace = 2^{14} \cdot 3^{3} \)
$\operatorname{Aut}(H)$ $D_6^2:D_4$, of order \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
$\card{W}$\(72\)\(\medspace = 2^{3} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2\times C_4$
Normalizer:$C_4.D_6^2$
Normal closure:$C_6^2.D_6$
Core:$C_6\times D_6$
Minimal over-subgroups:$C_6^2.D_6$$C_2.D_6^2$$C_2.D_6^2$$D_6^2:C_2$
Maximal under-subgroups:$C_6\times D_6$$C_6:D_6$$C_6:C_{12}$$C_3:D_{12}$$C_6:D_4$$C_2\times D_{12}$

Other information

Number of subgroups in this autjugacy class$12$
Number of conjugacy classes in this autjugacy class$4$
Möbius function not computed
Projective image not computed