Properties

Label 1728.47288.8.bk1
Order $ 2^{3} \cdot 3^{3} $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2:D_{12}$
Order: \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $bc^{5}, e^{4}, d^{2}, d^{3}e^{3}, e^{6}, c^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_{12}.D_6^2$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_2^3$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(2\)
Automorphism Group: $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Outer Automorphisms: $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3\wr C_4:D_6$, of order \(55296\)\(\medspace = 2^{11} \cdot 3^{3} \)
$\operatorname{Aut}(H)$ $C_3^3.(D_4\times \GL(3,3))$, of order \(2426112\)\(\medspace = 2^{8} \cdot 3^{6} \cdot 13 \)
$\card{W}$\(432\)\(\medspace = 2^{4} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_4$
Normalizer:$C_{12}.D_6^2$
Minimal over-subgroups:$C_6^2.D_6$$C_{12}:S_3^2$$C_{12}.S_3^2$$C_{12}.S_3^2$
Maximal under-subgroups:$C_3^2:D_6$$C_3^2\times C_{12}$$C_3:D_{12}$$C_3:D_{12}$$C_3:D_{12}$$C_3:D_{12}$$C_3:D_{12}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed