Properties

Label 1728.47288.54.h1
Order $ 2^{5} $
Index $ 2 \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4:C_2^2$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(54\)\(\medspace = 2 \cdot 3^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $a, b, c^{3}d^{5}e^{6}, e^{9}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_{12}.D_6^2$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3\wr C_4:D_6$, of order \(55296\)\(\medspace = 2^{11} \cdot 3^{3} \)
$\operatorname{Aut}(H)$ $C_2\wr D_6$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \)
$\card{W}$\(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2\times C_4$
Normalizer:$C_4.C_2^4$
Normal closure:$C_4.S_3^3$
Core:$C_4$
Minimal over-subgroups:$D_4:D_6$$Q_8:D_6$$C_4.C_2^4$
Maximal under-subgroups:$C_2\times D_4$$C_2^2\times C_4$$D_4:C_2$$D_4:C_2$$C_2^2\times C_4$$C_2\times D_4$$C_2\times Q_8$$D_4:C_2$$D_4:C_2$

Other information

Number of subgroups in this autjugacy class$54$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image not computed