Properties

Label 1728.47288.216.h1
Order $ 2^{3} $
Index $ 2^{3} \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3$
Order: \(8\)\(\medspace = 2^{3} \)
Index: \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
Exponent: \(2\)
Generators: $b, c^{3}d^{5}e^{3}, e^{6}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Ambient group ($G$) information

Description: $C_{12}.D_6^2$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3\wr C_4:D_6$, of order \(55296\)\(\medspace = 2^{11} \cdot 3^{3} \)
$\operatorname{Aut}(H)$ $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
$\card{W}$\(2\)

Related subgroups

Centralizer:$C_2^2\times Q_8$
Normalizer:$C_4.C_2^4$
Normal closure:$C_6:S_3^2$
Core:$C_2$
Minimal over-subgroups:$C_2\times D_6$$C_2\times D_6$$C_2\times D_6$$C_2\times D_4$$C_2\times D_4$$C_2^2\times C_4$$C_2^2\times C_4$$C_2\times D_4$
Maximal under-subgroups:$C_2^2$$C_2^2$$C_2^2$$C_2^2$

Other information

Number of subgroups in this autjugacy class$54$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image not computed