Properties

Label 1728.47288.12.cw1
Order $ 2^{4} \cdot 3^{2} $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{12}.D_6$
Order: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $ac^{3}e^{6}, d^{2}, c^{2}, bc^{5}d^{5}e^{6}, c^{3}d^{5}e^{3}, e^{6}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_{12}.D_6^2$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3\wr C_4:D_6$, of order \(55296\)\(\medspace = 2^{11} \cdot 3^{3} \)
$\operatorname{Aut}(H)$ $C_4:D_6^2$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
$\card{W}$\(288\)\(\medspace = 2^{5} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_4.D_6^2$
Normal closure:$C_2.S_3^3$
Core:$C_6.D_6$
Minimal over-subgroups:$C_2.S_3^3$$C_2.D_6^2$$Q_8\times S_3^2$$C_2.D_6^2$
Maximal under-subgroups:$C_6.D_6$$S_3\times C_{12}$$C_6.D_6$$C_3^2:Q_8$$C_3^2:Q_8$$C_3^2:Q_8$$C_3^2:Q_8$$C_6:Q_8$$S_3\times Q_8$

Other information

Number of subgroups in this autjugacy class$24$
Number of conjugacy classes in this autjugacy class$8$
Möbius function not computed
Projective image not computed