Properties

Label 1728.46937.2.d1.a1
Order $ 2^{5} \cdot 3^{3} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2:\GL(2,\mathbb{Z}/4)$
Order: \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
Index: \(2\)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $ab, d^{2}, e^{2}, c^{3}, c^{2}, e^{3}, d^{3}, b^{2}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_6.(D_6\times S_4)$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_3^2\times A_4).C_2^6$
$\operatorname{Aut}(H)$ $S_4\times D_6^2$, of order \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \)
$\operatorname{res}(\operatorname{Aut}(G))$$S_4\times D_6^2$, of order \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$C_2\times A_4:S_3^2$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_6.(D_6\times S_4)$
Complements:$C_2$ $C_2$
Minimal over-subgroups:$C_6.(D_6\times S_4)$
Maximal under-subgroups:$C_6:S_3\times A_4$$C_6^2:D_6$$C_3\times C_6.S_4$$D_6:S_4$$D_6:S_4$$C_6^2:D_4$$C_3^2:D_{12}$

Other information

Möbius function$-1$
Projective image$C_2\times A_4:S_3^2$