Properties

Label 1728.46903.6.j1.a1
Order $ 2^{5} \cdot 3^{2} $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_6\times S_4$
Order: \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\left(\begin{array}{rr} 71 & 21 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 43 & 42 \\ 0 & 43 \end{array}\right), \left(\begin{array}{rr} 64 & 63 \\ 21 & 43 \end{array}\right), \left(\begin{array}{rr} 17 & 48 \\ 36 & 53 \end{array}\right), \left(\begin{array}{rr} 1 & 42 \\ 42 & 1 \end{array}\right), \left(\begin{array}{rr} 13 & 0 \\ 0 & 13 \end{array}\right), \left(\begin{array}{rr} 49 & 36 \\ 48 & 13 \end{array}\right)$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_6^2:(C_2\times S_4)$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.C_6^2.C_2^4$
$\operatorname{Aut}(H)$ $C_2\times S_4^2$, of order \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
$\operatorname{res}(S)$$C_2^3\times S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(12\)\(\medspace = 2^{2} \cdot 3 \)
$W$$C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_6$
Normalizer:$C_2^4:S_3^2$
Normal closure:$C_6^2:S_4$
Core:$C_2^2:C_6^2$
Minimal over-subgroups:$C_6^2:S_4$$C_2^4:S_3^2$
Maximal under-subgroups:$C_2^2:C_6^2$$C_6\times S_4$$C_6\times S_4$$C_6\times S_4$$C_6\times S_4$$C_{12}:C_2^3$$C_2^2\times S_4$$C_6\times D_6$
Autjugate subgroups:1728.46903.6.j1.b11728.46903.6.j1.c1

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$1$
Projective image$S_3\times C_6:S_4$