Properties

Label 1728.46903.24.cy1.e1
Order $ 2^{3} \cdot 3^{2} $
Index $ 2^{3} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times S_4$
Order: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\left(\begin{array}{rr} 83 & 21 \\ 0 & 13 \end{array}\right), \left(\begin{array}{rr} 1 & 42 \\ 42 & 1 \end{array}\right), \left(\begin{array}{rr} 49 & 36 \\ 48 & 13 \end{array}\right), \left(\begin{array}{rr} 64 & 7 \\ 21 & 43 \end{array}\right), \left(\begin{array}{rr} 43 & 42 \\ 0 & 43 \end{array}\right)$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_6^2:(C_2\times S_4)$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.C_6^2.C_2^4$
$\operatorname{Aut}(H)$ $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\operatorname{res}(S)$$C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(24\)\(\medspace = 2^{3} \cdot 3 \)
$W$$C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_6$
Normalizer:$C_2^4:S_3^2$
Normal closure:$C_3^2:S_4$
Core:$C_3\times A_4$
Minimal over-subgroups:$C_3^2:S_4$$C_6\times S_4$$C_6\times S_4$$S_3\times S_4$
Maximal under-subgroups:$C_3\times A_4$$C_3\times D_4$$S_4$$C_3\times S_3$
Autjugate subgroups:1728.46903.24.cy1.a11728.46903.24.cy1.b11728.46903.24.cy1.c11728.46903.24.cy1.d11728.46903.24.cy1.f1

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$0$
Projective image$C_6^2:(C_2\times S_4)$