Subgroup ($H$) information
| Description: | $A_4\times C_3:C_4$ | 
| Order: | \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) | 
| Index: | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| Generators: | $\left(\begin{array}{rr}
17 & 60 \\
36 & 53
\end{array}\right), \left(\begin{array}{rr}
49 & 36 \\
48 & 13
\end{array}\right), \left(\begin{array}{rr}
1 & 42 \\
42 & 1
\end{array}\right), \left(\begin{array}{rr}
76 & 55 \\
57 & 7
\end{array}\right), \left(\begin{array}{rr}
13 & 0 \\
0 & 13
\end{array}\right), \left(\begin{array}{rr}
43 & 42 \\
0 & 43
\end{array}\right)$ | 
| Derived length: | $2$ | 
The subgroup is normal, a semidirect factor, nonabelian, monomial (hence solvable), metabelian, and an A-group.
Ambient group ($G$) information
| Description: | $C_6^2:(C_2\times S_4)$ | 
| Order: | \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \) | 
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| Derived length: | $3$ | 
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
| Description: | $D_6$ | 
| Order: | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) | 
| Automorphism Group: | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| Outer Automorphisms: | $C_2$, of order \(2\) | 
| Derived length: | $2$ | 
The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, an A-group, and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_6^2.C_6^2.C_2^4$ | 
| $\operatorname{Aut}(H)$ | $D_6\times S_4$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) | 
| $\operatorname{res}(S)$ | $D_6\times S_4$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(24\)\(\medspace = 2^{3} \cdot 3 \) | 
| $W$ | $D_6\times S_4$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) | 
Related subgroups
Other information
| Möbius function | $-6$ | 
| Projective image | $S_3\times C_6:S_4$ | 
