Properties

Label 1728.46787.72.dt1.a1
Order $ 2^{3} \cdot 3 $
Index $ 2^{3} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$S_4$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Index: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\left(\begin{array}{rr} 0 & 5 \\ 17 & 0 \end{array}\right), \left(\begin{array}{rr} 16 & 7 \\ 21 & 11 \end{array}\right), \left(\begin{array}{rr} 15 & 14 \\ 0 & 15 \end{array}\right), \left(\begin{array}{rr} 1 & 14 \\ 14 & 1 \end{array}\right)$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian, monomial (hence solvable), and rational.

Ambient group ($G$) information

Description: $C_2\times C_6^2:D_{12}$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_6\times A_4).C_2^6.C_2$
$\operatorname{Aut}(H)$ $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\operatorname{res}(S)$$S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(16\)\(\medspace = 2^{4} \)
$W$$S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_6$
Normalizer:$C_2\times C_6\times S_4$
Normal closure:$C_6:S_4$
Core:$C_2^2$
Minimal over-subgroups:$C_3\times S_4$$C_3:S_4$$C_2\times S_4$$C_2\times S_4$$C_2\times S_4$
Maximal under-subgroups:$A_4$$D_4$$S_3$
Autjugate subgroups:1728.46787.72.dt1.a21728.46787.72.dt1.b11728.46787.72.dt1.b2

Other information

Number of subgroups in this conjugacy class$6$
Möbius function$0$
Projective image$C_2\times C_6^2:D_{12}$