Properties

Label 1728.46787.432.u1.a1
Order $ 2^{2} $
Index $ 2^{4} \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
Exponent: \(2\)
Generators: $\left(\begin{array}{rr} 0 & 5 \\ 17 & 0 \end{array}\right), \left(\begin{array}{rr} 1 & 14 \\ 14 & 1 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Ambient group ($G$) information

Description: $C_2\times C_6^2:D_{12}$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_6\times A_4).C_2^6.C_2$
$\operatorname{Aut}(H)$ $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\operatorname{res}(S)$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(128\)\(\medspace = 2^{7} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2^3\times C_6$
Normalizer:$C_{12}:C_2^3$
Normal closure:$C_6:S_4$
Core:$C_1$
Minimal over-subgroups:$C_2\times C_6$$D_6$$C_2^3$$C_2^3$$C_2^3$$D_4$$D_4$$D_4$$D_4$
Maximal under-subgroups:$C_2$$C_2$
Autjugate subgroups:1728.46787.432.u1.b1

Other information

Number of subgroups in this conjugacy class$18$
Möbius function$0$
Projective image$C_2\times C_6^2:D_{12}$