Properties

Label 1728.46787.24.y1.a1
Order $ 2^{3} \cdot 3^{2} $
Index $ 2^{3} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6\times D_6$
Order: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\left(\begin{array}{rr} 15 & 0 \\ 0 & 15 \end{array}\right), \left(\begin{array}{rr} 8 & 7 \\ 21 & 15 \end{array}\right), \left(\begin{array}{rr} 0 & 5 \\ 17 & 0 \end{array}\right), \left(\begin{array}{rr} 13 & 0 \\ 0 & 13 \end{array}\right), \left(\begin{array}{rr} 9 & 0 \\ 0 & 9 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_2\times C_6^2:D_{12}$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_6\times A_4).C_2^6.C_2$
$\operatorname{Aut}(H)$ $D_6\times S_4$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
$\operatorname{res}(S)$$D_4\times D_6$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_6$
Normalizer:$C_6\times D_{12}$
Normal closure:$C_6^2:S_4$
Core:$C_2\times C_6$
Minimal over-subgroups:$C_2\times C_6\times S_4$$C_6^2:C_6$$C_6\times D_{12}$
Maximal under-subgroups:$C_6\times S_3$$C_6\times S_3$$C_6^2$$C_6\times S_3$$C_6\times S_3$$C_2^2\times C_6$$C_2\times D_6$

Other information

Number of subgroups in this conjugacy class$12$
Möbius function$-1$
Projective image$S_3\times S_4$