Properties

Label 1728.46787.18.w1.a1
Order $ 2^{5} \cdot 3 $
Index $ 2 \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{12}:D_4$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Index: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\left(\begin{array}{rr} 20 & 21 \\ 21 & 8 \end{array}\right), \left(\begin{array}{rr} 1 & 14 \\ 14 & 1 \end{array}\right), \left(\begin{array}{rr} 13 & 0 \\ 0 & 13 \end{array}\right), \left(\begin{array}{rr} 21 & 16 \\ 24 & 21 \end{array}\right), \left(\begin{array}{rr} 15 & 14 \\ 0 & 15 \end{array}\right), \left(\begin{array}{rr} 9 & 0 \\ 0 & 9 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_2\times C_6^2:D_{12}$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_6\times A_4).C_2^6.C_2$
$\operatorname{Aut}(H)$ $C_2^5:D_4$, of order \(256\)\(\medspace = 2^{8} \)
$\operatorname{res}(S)$$C_2^5$, of order \(32\)\(\medspace = 2^{5} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$C_2^3$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2^2\times C_6$
Normalizer:$C_2\times C_{12}:D_4$
Normal closure:$C_6^2:D_{12}$
Core:$C_2^2\times C_6$
Minimal over-subgroups:$C_6^2:D_4$$C_{12}:S_4$$C_2\times C_{12}:D_4$
Maximal under-subgroups:$C_6\times D_4$$C_2^2:C_{12}$$C_2^2:C_{12}$$C_4:C_{12}$$C_6\times D_4$$C_6\times D_4$$C_2^2\times C_{12}$$C_4:D_4$
Autjugate subgroups:1728.46787.18.w1.b11728.46787.18.w1.c11728.46787.18.w1.d1

Other information

Number of subgroups in this conjugacy class$9$
Möbius function$-1$
Projective image$D_6\times S_4$