Subgroup ($H$) information
Description: | $A_4$ |
Order: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Index: | \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Generators: |
$\left(\begin{array}{rr}
4 & 7 \\
21 & 15
\end{array}\right), \left(\begin{array}{rr}
15 & 14 \\
0 & 15
\end{array}\right), \left(\begin{array}{rr}
1 & 14 \\
14 & 1
\end{array}\right)$
|
Derived length: | $2$ |
The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.
Ambient group ($G$) information
Description: | $C_2\times C_6^2:D_{12}$ |
Order: | \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $(C_6\times A_4).C_2^6.C_2$ |
$\operatorname{Aut}(H)$ | $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
$\operatorname{res}(S)$ | $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(96\)\(\medspace = 2^{5} \cdot 3 \) |
$W$ | $A_4$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Related subgroups
Other information
Number of subgroups in this conjugacy class | $4$ |
Möbius function | $0$ |
Projective image | $C_2\times C_6^2:D_{12}$ |