Subgroup ($H$) information
| Description: | $C_2^4$ |
| Order: | \(16\)\(\medspace = 2^{4} \) |
| Index: | \(108\)\(\medspace = 2^{2} \cdot 3^{3} \) |
| Exponent: | \(2\) |
| Generators: |
$\left(\begin{array}{rr}
15 & 0 \\
0 & 15
\end{array}\right), \left(\begin{array}{rr}
13 & 0 \\
0 & 13
\end{array}\right), \left(\begin{array}{rr}
15 & 14 \\
0 & 15
\end{array}\right), \left(\begin{array}{rr}
1 & 14 \\
14 & 1
\end{array}\right)$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.
Ambient group ($G$) information
| Description: | $C_2\times C_6^2:D_{12}$ |
| Order: | \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
| Description: | $C_3\times S_3^2$ |
| Order: | \(108\)\(\medspace = 2^{2} \cdot 3^{3} \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Automorphism Group: | $S_3^2:C_2^2$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) |
| Outer Automorphisms: | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
| Nilpotency class: | $-1$ |
| Derived length: | $2$ |
The quotient is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(C_6\times A_4).C_2^6.C_2$ |
| $\operatorname{Aut}(H)$ | $A_8$, of order \(20160\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(768\)\(\medspace = 2^{8} \cdot 3 \) |
| $W$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Related subgroups
Other information
| Möbius function | $-18$ |
| Projective image | $C_6^2:D_6$ |