Properties

Label 1728.46343.96.z1.a1
Order $ 2 \cdot 3^{2} $
Index $ 2^{5} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3:S_3$
Order: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Index: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\left(\begin{array}{rr} 49 & 69 \\ 48 & 7 \end{array}\right), \left(\begin{array}{rr} 64 & 21 \\ 63 & 43 \end{array}\right), \left(\begin{array}{rr} 49 & 36 \\ 48 & 13 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, an A-group, and rational.

Ambient group ($G$) information

Description: $C_2^3.S_3^3$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_2^2.D_6^2\times S_3$
$\operatorname{Aut}(H)$ $C_3^2:\GL(2,3)$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
$\operatorname{res}(S)$$S_3^2$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(24\)\(\medspace = 2^{3} \cdot 3 \)
$W$$C_3:S_3$, of order \(18\)\(\medspace = 2 \cdot 3^{2} \)

Related subgroups

Centralizer:$D_6$
Normalizer:$C_6:S_3^2$
Normal closure:$C_6:S_4$
Core:$C_3$
Minimal over-subgroups:$C_3:S_4$$C_3^2:C_6$$C_6:S_3$$C_6:S_3$$C_6:S_3$
Maximal under-subgroups:$C_3^2$$S_3$$S_3$$S_3$$S_3$

Other information

Number of subgroups in this conjugacy class$8$
Möbius function$0$
Projective image$C_2^3.S_3^3$