Properties

Label 1728.46343.72.fd1.a2
Order $ 2^{3} \cdot 3 $
Index $ 2^{3} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$S_4$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Index: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\left(\begin{array}{rr} 49 & 69 \\ 48 & 7 \end{array}\right), \left(\begin{array}{rr} 76 & 69 \\ 15 & 7 \end{array}\right), \left(\begin{array}{rr} 43 & 42 \\ 0 & 43 \end{array}\right), \left(\begin{array}{rr} 1 & 42 \\ 42 & 1 \end{array}\right)$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian, monomial (hence solvable), and rational.

Ambient group ($G$) information

Description: $C_2^3.S_3^3$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_2^2.D_6^2\times S_3$
$\operatorname{Aut}(H)$ $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\operatorname{res}(S)$$S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(24\)\(\medspace = 2^{3} \cdot 3 \)
$W$$S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$D_6$
Normalizer:$D_6\times S_4$
Normal closure:$C_6:S_4$
Core:$C_2^2$
Minimal over-subgroups:$C_3\times S_4$$C_3:S_4$$C_2\times S_4$$C_2\times S_4$$C_2\times S_4$
Maximal under-subgroups:$A_4$$D_4$$S_3$
Autjugate subgroups:1728.46343.72.fd1.a1

Other information

Number of subgroups in this conjugacy class$6$
Möbius function$0$
Projective image$C_2^3.S_3^3$