Properties

Label 1728.46343.18.m1.a1
Order $ 2^{5} \cdot 3 $
Index $ 2 \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_6.D_4$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Index: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\left(\begin{array}{rr} 59 & 27 \\ 36 & 53 \end{array}\right), \left(\begin{array}{rr} 1 & 28 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 43 & 42 \\ 0 & 43 \end{array}\right), \left(\begin{array}{rr} 1 & 28 \\ 0 & 29 \end{array}\right), \left(\begin{array}{rr} 71 & 18 \\ 66 & 83 \end{array}\right), \left(\begin{array}{rr} 55 & 42 \\ 0 & 55 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_2^3.S_3^3$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_2^2.D_6^2\times S_3$
$\operatorname{Aut}(H)$ $C_2^6:D_6$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \)
$\operatorname{res}(S)$$D_6\times C_2^4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_2^2\times D_6$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$S_3\times C_4:D_4$
Normal closure:$C_2^3.S_3^3$
Core:$D_6$
Minimal over-subgroups:$C_2^3.S_3^2$$S_3\times C_4:D_4$
Maximal under-subgroups:$C_2^2\times D_6$$C_4\times D_6$$C_4\times D_6$$C_2^2:C_{12}$$C_6.D_4$$D_6:C_4$$D_6:C_4$$C_2^3:C_4$

Other information

Number of subgroups in this conjugacy class$9$
Möbius function$0$
Projective image$S_4\times S_3^2$