Properties

Label 1728.46343.12.l1.a1
Order $ 2^{4} \cdot 3^{2} $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^2:C_2^2$
Order: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\left(\begin{array}{rr} 59 & 27 \\ 36 & 53 \end{array}\right), \left(\begin{array}{rr} 1 & 28 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 49 & 36 \\ 48 & 13 \end{array}\right), \left(\begin{array}{rr} 1 & 28 \\ 0 & 29 \end{array}\right), \left(\begin{array}{rr} 13 & 0 \\ 0 & 13 \end{array}\right), \left(\begin{array}{rr} 43 & 42 \\ 0 & 43 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_2^3.S_3^3$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_2^2.D_6^2\times S_3$
$\operatorname{Aut}(H)$ $S_3\times C_2^4:\GL(3,2)$, of order \(16128\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 7 \)
$\operatorname{res}(S)$$C_2^3\times D_6$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(24\)\(\medspace = 2^{3} \cdot 3 \)
$W$$C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_2^2\times C_6$
Normalizer:$C_2^2.D_6^2$
Normal closure:$C_6\times S_3\times S_4$
Core:$C_6\times S_3$
Minimal over-subgroups:$D_6^2:C_2$$C_2^3.S_3^2$$C_6^2:C_2^3$
Maximal under-subgroups:$C_6\times D_6$$C_6\times D_6$$C_2\times C_6^2$$C_6\times D_6$$C_6\times D_6$$C_6\times D_6$$C_6\times D_6$$C_6\times D_6$$C_6\times D_6$$C_2^3\times C_6$$C_2^2\times D_6$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$0$
Projective image$S_4\times S_3^2$