Properties

Label 1728.46260.48.b1.b1
Order $ 2^{2} \cdot 3^{2} $
Index $ 2^{4} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2:C_4$
Order: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Index: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $b^{3}d^{6}, b^{6}, c^{2}d^{6}, d^{4}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $\SL(2,3).\SOPlus(4,2)$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Quotient group ($Q$) structure

Description: $C_2.S_4$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Automorphism Group: $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $4$

The quotient is nonabelian and solvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.(C_6\times D_4).C_2^3$
$\operatorname{Aut}(H)$ $F_9:C_2$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
$\operatorname{res}(S)$$F_9:C_2$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(48\)\(\medspace = 2^{4} \cdot 3 \)
$W$$\SOPlus(4,2)$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)

Related subgroups

Centralizer:$\SL(2,3)$
Normalizer:$\SL(2,3).\SOPlus(4,2)$
Complements:$C_2.S_4$ $C_2.S_4$ $C_2.S_4$ $C_2.S_4$
Minimal over-subgroups:$C_3^2:C_{12}$$C_2\times C_3^2:C_4$
Maximal under-subgroups:$C_3:S_3$$C_4$
Autjugate subgroups:1728.46260.48.b1.a1

Other information

Möbius function$0$
Projective image$\SL(2,3).\SOPlus(4,2)$