Subgroup ($H$) information
| Description: | $C_3^2:C_4$ |
| Order: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| Index: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Generators: |
$b^{3}d^{6}, b^{6}, c^{2}d^{6}, d^{4}$
|
| Derived length: | $2$ |
The subgroup is normal, a semidirect factor, nonabelian, monomial (hence solvable), metabelian, and an A-group.
Ambient group ($G$) information
| Description: | $\SL(2,3).\SOPlus(4,2)$ |
| Order: | \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \) |
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Derived length: | $4$ |
The ambient group is nonabelian and solvable.
Quotient group ($Q$) structure
| Description: | $C_2.S_4$ |
| Order: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Automorphism Group: | $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| Outer Automorphisms: | $C_2$, of order \(2\) |
| Derived length: | $4$ |
The quotient is nonabelian and solvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_6^2.(C_6\times D_4).C_2^3$ |
| $\operatorname{Aut}(H)$ | $F_9:C_2$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) |
| $\operatorname{res}(S)$ | $F_9:C_2$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| $W$ | $\SOPlus(4,2)$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
Related subgroups
Other information
| Möbius function | $0$ |
| Projective image | $\SL(2,3).\SOPlus(4,2)$ |