Properties

Label 1728.46260.12.g1.a1
Order $ 2^{4} \cdot 3^{2} $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2.\SOPlus(4,2)$
Order: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a, d^{4}, c^{2}d^{6}, b^{3}, b^{6}, d^{6}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $\SL(2,3).\SOPlus(4,2)$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.(C_6\times D_4).C_2^3$
$\operatorname{Aut}(H)$ $C_6^2:\SD_{16}$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
$\operatorname{res}(S)$$C_6^2:\SD_{16}$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$S_3^2:C_2^2$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_4.\SOPlus(4,2)$
Normal closure:$\SL(2,3).\SOPlus(4,2)$
Core:$C_2\times C_3^2:C_4$
Minimal over-subgroups:$C_6.\SOPlus(4,2)$$C_4.\SOPlus(4,2)$
Maximal under-subgroups:$C_2\times C_3^2:C_4$$C_6.D_6$$C_6.D_6$$C_4:C_4$

Other information

Number of subgroups in this conjugacy class$6$
Möbius function$2$
Projective image$C_6^2:D_{12}$