Subgroup ($H$) information
| Description: | $C_1$ | 
| Order: | $1$ | 
| Index: | \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \) | 
| Exponent: | $1$ | 
| Generators: | |
| Nilpotency class: | $0$ | 
| Derived length: | $0$ | 
The subgroup is characteristic (hence normal), a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), stem (hence central), a $p$-group (for every $p$), perfect, and rational.
Ambient group ($G$) information
| Description: | $(C_3\times C_6).\GL(2,\mathbb{Z}/4)$ | 
| Order: | \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \) | 
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) | 
| Derived length: | $3$ | 
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
| Description: | $(C_3\times C_6).\GL(2,\mathbb{Z}/4)$ | 
| Order: | \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \) | 
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) | 
| Automorphism Group: | $C_3^4.Q_8.(C_6\times A_4).C_2^5$ | 
| Outer Automorphisms: | $C_6^2:\GL(2,3)$, of order \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \) | 
| Nilpotency class: | $-1$ | 
| Derived length: | $3$ | 
The quotient is nonabelian and monomial (hence solvable).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3^4.Q_8.(C_6\times A_4).C_2^5$ | 
| $\operatorname{Aut}(H)$ | $C_1$, of order $1$ | 
| $W$ | $C_1$, of order $1$ | 
Related subgroups
Other information
| Number of conjugacy classes in this autjugacy class | $1$ | 
| Möbius function | $0$ | 
| Projective image | $(C_3\times C_6).\GL(2,\mathbb{Z}/4)$ | 
