Properties

Label 1728.34797.48.bs1
Order $ 2^{2} \cdot 3^{2} $
Index $ 2^{4} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times C_{12}$
Order: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Index: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $c^{3}, b^{2}, c^{4}, c^{6}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 3$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $(C_2\times C_4).S_3^3$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(55296\)\(\medspace = 2^{11} \cdot 3^{3} \)
$\operatorname{Aut}(H)$ $C_2\times \GL(2,3)$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\card{W}$\(2\)

Related subgroups

Centralizer:$C_{12}^2$
Normalizer:$C_{12}\times D_{12}$
Normal closure:$C_6.C_6^2$
Core:$C_3\times C_6$
Minimal over-subgroups:$C_3^2:C_{12}$$C_6\times C_{12}$$S_3\times C_{12}$$S_3\times C_{12}$
Maximal under-subgroups:$C_3\times C_6$$C_{12}$$C_{12}$$C_{12}$

Other information

Number of subgroups in this autjugacy class$6$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed