Properties

Label 1728.34767.18.a1.a1
Order $ 2^{5} \cdot 3 $
Index $ 2 \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{12}.D_4$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Index: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $b^{3}, d^{6}, c^{6}, c^{3}, d^{3}, b^{2}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $(C_2\times C_4).S_3^3$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times C_3^3.C_2^6.C_2^4$
$\operatorname{Aut}(H)$ $C_2^5:D_4$, of order \(256\)\(\medspace = 2^{8} \)
$\card{W}$\(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_2\times C_6$
Normalizer:$C_2.(Q_8\times D_6)$
Normal closure:$(C_3^2\times D_6):Q_8$
Core:$C_2\times C_{12}$
Minimal over-subgroups:$C_6^2:Q_8$$C_6^2.C_2^3$$C_2.(Q_8\times D_6)$
Maximal under-subgroups:$C_2^2:C_{12}$$C_2^2\times C_{12}$$C_2^2:C_{12}$$C_4:C_{12}$$C_4:C_{12}$$C_4:C_{12}$$C_6\times Q_8$$C_2^2:Q_8$
Autjugate subgroups:1728.34767.18.a1.b1

Other information

Number of subgroups in this conjugacy class$9$
Möbius function not computed
Projective image not computed