Properties

Label 1728.34723.4.g1.a1
Order $ 2^{4} \cdot 3^{3} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^2.D_6$
Order: \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $ac^{3}d^{3}, c^{4}, b^{2}c^{6}, b^{3}c^{3}, d^{4}, c^{6}, d^{6}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $(C_2\times C_4).S_3^3$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(55296\)\(\medspace = 2^{11} \cdot 3^{3} \)
$\operatorname{Aut}(H)$ $C_3^3.C_2^6.C_2^2$
$\card{W}$\(432\)\(\medspace = 2^{4} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$(C_2\times C_4).S_3^3$
Minimal over-subgroups:$C_2^2.S_3^3$$C_6.(S_3\times D_{12})$$C_2^2.S_3^3$
Maximal under-subgroups:$C_6^2:C_6$$C_6^2.C_6$$C_6^2.C_6$$C_6.D_{12}$$C_6.D_{12}$$C_6.D_{12}$

Other information

Möbius function not computed
Projective image not computed