Properties

Label 1728.34719.192.d1.a1
Order $ 3^{2} $
Index $ 2^{6} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2$
Order: \(9\)\(\medspace = 3^{2} \)
Index: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Exponent: \(3\)
Generators: $b^{2}d^{2}, c^{4}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $(C_2\times C_4).S_3^3$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(55296\)\(\medspace = 2^{11} \cdot 3^{3} \)
$\operatorname{Aut}(H)$ $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\card{W}$\(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_3\times C_6\times C_{12}$
Normalizer:$(C_6\times C_{12}).D_6$
Normal closure:$C_3^3$
Core:$C_3$
Minimal over-subgroups:$C_3^3$$C_3\times C_6$$C_3\times C_6$$C_3\times C_6$$C_3\times S_3$$C_3\times S_3$$C_3\times S_3$$C_3\times S_3$
Maximal under-subgroups:$C_3$$C_3$$C_3$

Other information

Number of subgroups in this conjugacy class$2$
Möbius function not computed
Projective image not computed