Properties

Label 1728.34645.18.b1.a1
Order $ 2^{5} \cdot 3 $
Index $ 2 \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{12}:D_4$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Index: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $ad^{3}, b^{2}, d^{6}, b^{3}, c^{3}, c^{6}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $(C_2\times C_4).S_3^3$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(55296\)\(\medspace = 2^{11} \cdot 3^{3} \)
$\operatorname{Aut}(H)$ $D_6\times C_2^5$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
$\card{W}$\(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_4$
Normalizer:$(C_2\times C_6).C_2^4$
Normal closure:$C_2^2.S_3^3$
Core:$C_6:C_4$
Minimal over-subgroups:$C_2^3.S_3^2$$C_6^2.C_2^3$$(C_2\times C_6).C_2^4$
Maximal under-subgroups:$C_6:D_4$$C_2^2\times C_{12}$$C_6.D_4$$D_6:C_4$$C_4\times D_6$$C_6.D_4$$C_{12}:C_4$$C_4\times D_4$

Other information

Number of subgroups in this conjugacy class$9$
Möbius function not computed
Projective image not computed