Properties

Label 1728.34389.6.bq1
Order $ 2^{5} \cdot 3^{2} $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^2.C_2^3$
Order: \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a, b^{2}c^{6}, d^{6}, b^{3}d^{3}, d^{4}, c^{3}, c^{6}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $(C_2\times C_4).S_3^3$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(55296\)\(\medspace = 2^{11} \cdot 3^{3} \)
$\operatorname{Aut}(H)$ $C_2^2\times D_6^2.C_2^2$
$\card{W}$\(144\)\(\medspace = 2^{4} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_2^2.D_6^2$
Normal closure:$C_2^2.S_3^3$
Core:$C_6.D_{12}$
Minimal over-subgroups:$C_2^2.S_3^3$$C_2^2.D_6^2$
Maximal under-subgroups:$C_6.D_{12}$$C_2^2.S_3^2$$C_6.D_{12}$$C_6.D_{12}$$C_{12}:C_{12}$$C_6^2.C_2^2$$C_2^2.S_3^2$$D_6:Q_8$$D_6:Q_8$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed