Properties

Label 1728.34016.12.P
Order $ 2^{4} \cdot 3^{2} $
Index $ 2^{2} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2:C_4^2$
Order: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $b^{3}, d^{4}, c^{4}, c^{3}, c^{6}, d^{6}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $(C_2\times C_4).S_3^3$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $D_6$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, an A-group, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_2^4.\SL(3,3)$, of order \(55296\)\(\medspace = 2^{11} \cdot 3^{3} \)
$\operatorname{Aut}(H)$ $D_6^2:D_4$, of order \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
$\card{W}$\(72\)\(\medspace = 2^{3} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_6:C_4$
Normalizer:$(C_2\times C_4).S_3^3$
Minimal over-subgroups:$C_3^3:C_4^2$$C_6^2.C_2^3$$C_6^2.C_2^3$$C_6^2.C_2^3$
Maximal under-subgroups:$C_6:C_{12}$$C_6:C_{12}$$C_6.D_6$$C_{12}:C_4$$C_{12}:C_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed