Properties

Label 1728.33979.2.n1
Order $ 2^{5} \cdot 3^{3} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_6\times C_{12}).D_6$
Order: \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
Index: \(2\)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $ab^{3}, d^{6}, b^{2}, c^{3}, c^{6}d^{6}, d^{4}, c^{4}, d^{3}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $(C_2\times C_4).S_3^3$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(55296\)\(\medspace = 2^{11} \cdot 3^{3} \)
$\operatorname{Aut}(H)$ $\PSU(3,2).C_6^2.C_2^6.C_2$
$\card{W}$\(432\)\(\medspace = 2^{4} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$(C_2\times C_4).S_3^3$
Complements:$C_2$ $C_2$ $C_2$
Minimal over-subgroups:$(C_2\times C_4).S_3^3$
Maximal under-subgroups:$C_6^2.D_6$$C_6^2.D_6$$C_6^2.D_6$$C_6^2.D_6$$C_6^2.D_6$$C_6^2.D_6$$C_6^2.D_6$$C_6^2.C_2^3$$C_6^2.C_2^3$$C_6^2.C_2^3$$C_6^2.C_2^3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed