Properties

Label 1728.33948.48.db1.b1
Order $ 2^{2} \cdot 3^{2} $
Index $ 2^{4} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2:C_4$
Order: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Index: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $ab^{3}c^{9}d^{6}, d^{6}, b^{2}c^{6}d^{6}, c^{4}d^{8}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $(C_2\times C_4).S_3^3$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(55296\)\(\medspace = 2^{11} \cdot 3^{3} \)
$\operatorname{Aut}(H)$ $C_2\times C_3^2:\GL(2,3)$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
$\card{W}$\(72\)\(\medspace = 2^{3} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_6^2.C_2^3$
Normal closure:$C_3^3:C_4$
Core:$C_6$
Minimal over-subgroups:$C_3^3:C_4$$C_6.D_6$$C_6.D_6$$C_3^2:Q_8$
Maximal under-subgroups:$C_3\times C_6$$C_3:C_4$$C_3:C_4$$C_3:C_4$
Autjugate subgroups:1728.33948.48.db1.a1

Other information

Number of subgroups in this conjugacy class$6$
Möbius function not computed
Projective image not computed