Properties

Label 1728.33948.16.f1.a1
Order $ 2^{2} \cdot 3^{3} $
Index $ 2^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^3:C_4$
Order: \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $ab^{3}c^{3}, d^{4}, d^{6}, b^{2}c^{6}d^{6}, c^{4}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $(C_2\times C_4).S_3^3$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $D_4:C_2$
Order: \(16\)\(\medspace = 2^{4} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Outer Automorphisms: $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(55296\)\(\medspace = 2^{11} \cdot 3^{3} \)
$\operatorname{Aut}(H)$ $C_2\times C_3^3:\GL(3,3)$, of order \(606528\)\(\medspace = 2^{6} \cdot 3^{6} \cdot 13 \)
$\card{W}$\(432\)\(\medspace = 2^{4} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$(C_2\times C_4).S_3^3$
Minimal over-subgroups:$C_6^2.S_3$$C_6.S_3^2$$C_3^3:Q_8$$C_3^3:Q_8$
Maximal under-subgroups:$C_3^2\times C_6$$C_3^2:C_4$$C_3^2:C_4$$C_3^2:C_4$$C_3^2:C_4$$C_3^2:C_4$$C_3^2:C_4$$C_3^2:C_4$
Autjugate subgroups:1728.33948.16.f1.b1

Other information

Möbius function not computed
Projective image not computed