Properties

Label 1728.33796.36.bh1.a1
Order $ 2^{4} \cdot 3 $
Index $ 2^{2} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times \OD_{16}$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Index: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $b^{3}d^{15}, d^{12}, c^{3}, b^{2}, d^{18}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $C_8:S_3^3$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3.C_2^6.C_2^3$
$\operatorname{Aut}(H)$ $C_2^2\times D_4$, of order \(32\)\(\medspace = 2^{5} \)
$\operatorname{res}(S)$$C_2^4$, of order \(16\)\(\medspace = 2^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(48\)\(\medspace = 2^{4} \cdot 3 \)
$W$$C_2^3$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2\times C_{12}$
Normalizer:$D_6\times \OD_{16}$
Normal closure:$C_{12}.S_3^2$
Core:$C_{12}$
Minimal over-subgroups:$C_{12}.C_{12}$$C_{24}:C_6$$S_3\times \OD_{16}$$S_3\times \OD_{16}$$C_6\times \OD_{16}$
Maximal under-subgroups:$C_2\times C_{12}$$C_{24}$$C_{24}$$\OD_{16}$
Autjugate subgroups:1728.33796.36.bh1.b1

Other information

Number of subgroups in this conjugacy class$9$
Möbius function$2$
Projective image$C_2\times S_3^3$