Properties

Label 1728.33796.192.a1.b1
Order $ 3^{2} $
Index $ 2^{6} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2$
Order: \(9\)\(\medspace = 3^{2} \)
Index: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Exponent: \(3\)
Generators: $b^{2}, c^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_8:S_3^3$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $D_6\times \OD_{16}$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Automorphism Group: $S_3\times C_2^5.C_2^4$, of order \(3072\)\(\medspace = 2^{10} \cdot 3 \)
Outer Automorphisms: $C_2\times D_4^2$, of order \(128\)\(\medspace = 2^{7} \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3.C_2^6.C_2^3$
$\operatorname{Aut}(H)$ $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\operatorname{res}(S)$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_{12}.C_6^2$
Normalizer:$C_8:S_3^3$
Complements:$D_6\times \OD_{16}$
Minimal over-subgroups:$C_3^3$$C_3\times C_6$$C_3\times S_3$$C_3\times S_3$$C_3\times C_6$$C_3\times S_3$$C_3\times S_3$$C_3\times S_3$$C_3\times S_3$$C_3:S_3$$C_3:S_3$$C_3:S_3$
Maximal under-subgroups:$C_3$$C_3$$C_3$
Autjugate subgroups:1728.33796.192.a1.a1

Other information

Möbius function$0$
Projective image$C_8:S_3^3$