Properties

Label 1728.33796.18.f1.b1
Order $ 2^{5} \cdot 3 $
Index $ 2 \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_8\times D_6$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Index: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $a, c^{2}, d^{12}, b^{3}c, d^{3}, d^{6}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_8:S_3^3$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3.C_2^6.C_2^3$
$\operatorname{Aut}(H)$ $C_2^5:D_6$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
$\operatorname{res}(S)$$C_2^3\times D_6$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_8$
Normalizer:$D_6\times \OD_{16}$
Normal closure:$C_{24}:S_3^2$
Core:$C_{24}$
Minimal over-subgroups:$C_{24}:D_6$$C_8\times S_3^2$$D_6\times \OD_{16}$
Maximal under-subgroups:$C_4\times D_6$$C_2\times C_{24}$$C_6:C_8$$S_3\times C_8$$S_3\times C_8$$S_3\times C_8$$S_3\times C_8$$C_2^2\times C_8$
Autjugate subgroups:1728.33796.18.f1.a1

Other information

Number of subgroups in this conjugacy class$9$
Möbius function$-1$
Projective image$C_2\times S_3^3$