Properties

Label 1728.33796.16.e1.a1
Order $ 2^{2} \cdot 3^{3} $
Index $ 2^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2:D_6$
Order: \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $abc, d^{8}, d^{12}, b^{2}, c^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), metabelian, an A-group, and rational.

Ambient group ($G$) information

Description: $C_8:S_3^3$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_2^2\times C_4$
Order: \(16\)\(\medspace = 2^{4} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2^3:S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
Outer Automorphisms: $C_2^3:S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and a $p$-group (hence elementary and hyperelementary).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3.C_2^6.C_2^3$
$\operatorname{Aut}(H)$ $C_2\times C_3^3:\GL(3,3)$, of order \(606528\)\(\medspace = 2^{6} \cdot 3^{6} \cdot 13 \)
$\operatorname{res}(\operatorname{Aut}(G))$$S_3^3:C_2^2$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(16\)\(\medspace = 2^{4} \)
$W$$S_3^3$, of order \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_8$
Normalizer:$C_8:S_3^3$
Minimal over-subgroups:$C_6:S_3^2$$C_6:S_3^2$$C_6:S_3^2$$C_4\times C_3^2:S_3$$C_6.S_3^2$$C_6.S_3^2$$C_6.S_3^2$
Maximal under-subgroups:$C_3^2\times C_6$$C_3^2:S_3$$C_3^2:S_3$$C_6:S_3$$C_6:S_3$$C_6:S_3$$C_6:S_3$$C_6:S_3$$C_6:S_3$$C_6:S_3$

Other information

Möbius function$0$
Projective image$C_4\times S_3^3$