Properties

Label 1728.32842.144.i1.a1
Order $ 2^{2} \cdot 3 $
Index $ 2^{4} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_6$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Index: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $ab^{3}, d^{6}, d^{4}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, an A-group, and rational.

Ambient group ($G$) information

Description: $C_6^2.(C_6\times D_4)$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times D_6:D_6).C_2^4$, of order \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \)
$\operatorname{Aut}(H)$ $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$\operatorname{res}(S)$$D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(96\)\(\medspace = 2^{5} \cdot 3 \)
$W$$D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_3\times D_{12}$
Normalizer:$C_6.D_6^2$
Normal closure:$S_3\times D_6$
Core:$C_2$
Minimal over-subgroups:$C_6\times S_3$$C_6\times S_3$$C_6\times S_3$$C_3:D_4$$D_{12}$$D_{12}$$C_4\times S_3$$C_2\times D_6$$C_2\times D_6$$D_{12}$
Maximal under-subgroups:$C_6$$S_3$$C_2^2$
Autjugate subgroups:1728.32842.144.i1.b1

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$D_6^2:C_6$