Properties

Label 1728.32842.108.l1.a1
Order $ 2^{4} $
Index $ 2^{2} \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times D_4$
Order: \(16\)\(\medspace = 2^{4} \)
Index: \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $ab^{3}c^{3}d^{6}, d^{3}, b^{6}c^{3}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.

Ambient group ($G$) information

Description: $C_6^2.(C_6\times D_4)$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times D_6:D_6).C_2^4$, of order \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \)
$\operatorname{Aut}(H)$ $C_2\wr C_2^2$, of order \(64\)\(\medspace = 2^{6} \)
$\operatorname{res}(S)$$C_2^3$, of order \(8\)\(\medspace = 2^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(16\)\(\medspace = 2^{4} \)
$W$$C_2^3$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2\times C_6$
Normalizer:$C_6.C_2^4$
Normal closure:$D_{12}:D_6$
Core:$C_2$
Minimal over-subgroups:$C_6\times D_4$$S_3\times D_4$$C_2\times D_{12}$$D_4:C_2^2$
Maximal under-subgroups:$D_4$$D_4$$C_2\times C_4$$C_2^3$$C_2^3$$D_4$$D_4$
Autjugate subgroups:1728.32842.108.l1.b1

Other information

Number of subgroups in this conjugacy class$18$
Möbius function$0$
Projective image$D_6^2:C_6$