Properties

Label 1728.32142.18.p1.a1
Order $ 2^{5} \cdot 3 $
Index $ 2 \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2:C_{24}$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Index: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $b^{3}, b^{12}, e, d^{3}, b^{8}, b^{6}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_{12}.(S_3\times S_4)$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_6\times S_3\times A_4).C_2^5$
$\operatorname{Aut}(H)$ $C_2^4:D_4$, of order \(128\)\(\medspace = 2^{7} \)
$\operatorname{res}(S)$$C_2^5$, of order \(32\)\(\medspace = 2^{5} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(48\)\(\medspace = 2^{4} \cdot 3 \)
$W$$C_2^3$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2\times C_{12}$
Normalizer:$D_{12}.D_4$
Normal closure:$C_3\times C_{12}.S_4$
Core:$C_2^2\times C_{12}$
Minimal over-subgroups:$C_6^2:C_8$$A_4:C_{24}$$A_4:C_{24}$$D_{12}.D_4$
Maximal under-subgroups:$C_2^2\times C_{12}$$C_2\times C_{24}$$C_2\times C_{24}$$C_2^2:C_8$

Other information

Number of subgroups in this conjugacy class$9$
Möbius function$-1$
Projective image$C_3^2:\GL(2,\mathbb{Z}/4)$