Subgroup ($H$) information
| Description: | $C_6:C_{24}$ | 
| Order: | \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) | 
| Index: | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) | 
| Generators: | $b^{3}, d^{2}, b^{12}, e, b^{8}, b^{6}$ | 
| Derived length: | $2$ | 
The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Ambient group ($G$) information
| Description: | $C_{12}.(S_3\times S_4)$ | 
| Order: | \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \) | 
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) | 
| Derived length: | $3$ | 
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(C_6\times S_3\times A_4).C_2^5$ | 
| $\operatorname{Aut}(H)$ | $C_{12}:C_2^4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \) | 
| $\operatorname{res}(S)$ | $C_2^3\times D_6$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(48\)\(\medspace = 2^{4} \cdot 3 \) | 
| $W$ | $C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) | 
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $3$ | 
| Möbius function | $0$ | 
| Projective image | $C_3^2:\GL(2,\mathbb{Z}/4)$ | 
