Subgroup ($H$) information
| Description: | $C_2^2\times Q_8$ |
| Order: | \(32\)\(\medspace = 2^{5} \) |
| Index: | \(54\)\(\medspace = 2 \cdot 3^{3} \) |
| Exponent: | \(4\)\(\medspace = 2^{2} \) |
| Generators: |
$\left(\begin{array}{rr}
61 & 24 \\
24 & 65
\end{array}\right), \left(\begin{array}{rr}
1 & 12 \\
36 & 13
\end{array}\right), \left(\begin{array}{rr}
43 & 0 \\
42 & 43
\end{array}\right), \left(\begin{array}{rr}
43 & 42 \\
0 & 43
\end{array}\right)$
|
| Nilpotency class: | $2$ |
| Derived length: | $2$ |
The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.
Ambient group ($G$) information
| Description: | $C_3\times C_6.\GL(2,\mathbb{Z}/4)$ |
| Order: | \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \) |
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^5.D_6^2$, of order \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \) |
| $\operatorname{Aut}(H)$ | $C_2^6:(S_3\times S_4)$, of order \(9216\)\(\medspace = 2^{10} \cdot 3^{2} \) |
| $\operatorname{res}(S)$ | $S_3\times D_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(32\)\(\medspace = 2^{5} \) |
| $W$ | $C_3:D_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $3$ |
| Möbius function | $3$ |
| Projective image | $C_3^2:\GL(2,\mathbb{Z}/4)$ |