Properties

Label 1728.31922.3.a1.a1
Order $ 2^{6} \cdot 3^{2} $
Index $ 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{12}:S_4$
Order: \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Index: \(3\)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $\left(\begin{array}{rr} 55 & 3 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 64 & 21 \\ 63 & 43 \end{array}\right), \left(\begin{array}{rr} 1 & 28 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 53 & 26 \\ 18 & 31 \end{array}\right), \left(\begin{array}{rr} 13 & 0 \\ 0 & 13 \end{array}\right), \left(\begin{array}{rr} 43 & 0 \\ 42 & 43 \end{array}\right), \left(\begin{array}{rr} 43 & 42 \\ 0 & 43 \end{array}\right), \left(\begin{array}{rr} 67 & 12 \\ 12 & 31 \end{array}\right)$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), maximal, a direct factor, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_3\times D_{12}:S_4$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_3$
Order: \(3\)
Exponent: \(3\)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^5.D_6^2$, of order \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \)
$\operatorname{Aut}(H)$ $C_2^4:D_6^2$, of order \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2^4:D_6^2$, of order \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$D_6:S_4$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_3\times D_{12}:S_4$
Complements:$C_3$ $C_3$ $C_3$ $C_3$
Minimal over-subgroups:$C_3\times D_{12}:S_4$
Maximal under-subgroups:$A_4\times D_{12}$$C_{12}:S_4$$C_{12}.S_4$$D_4:S_4$$D_{12}:D_4$$D_{12}:S_3$

Other information

Möbius function$-1$
Projective image$C_3^2:\GL(2,\mathbb{Z}/4)$